c02 — Zeros of Polynomials c02agc

nag_zeros_real poly (c02agc)

1. Purpose

nag_zeros_real_poly (c02agc) finds all the roots of a real polynomial equation, using a variant of
Laguerre’s Method.

2. Specification

#include <nag.h>
#include <nagc02.h>

void nag_zeros_real_poly(Integer n, double a[], Boolean scale, Complex z[],

NagError *fail)

3. Description
The function attempts to find all the roots of the nth degree real polynomial equation
P(2) = agz" +a 2" '+ ay2"?+... +a, 2 +a, =0.

The roots are located using a form modified of Laguerre’s Method, originally proposed by Smith

(1967).

The method of Laguerre (see Wilkinson (1965)) can be described by the iterative scheme
—nP(z,)

P'(z,) + H(Zk),

L(z,) = 41l T Rk T

where H(z,) = (n—1)[(n — 1)(P'(2;,))? — nP(z;,)P"(2,)], and z, is specified.

The sign in the denominator is chosen so that the modulus of the Laguerre step at z;, viz. |L(z,)|,
is as small as possible. The method can be shown to be cubically convergent for isolated roots (real
or complex) and linearly convergent for multiple roots.

The function generates a sequence of iterates zy,zy,25,..., such that |P(z,)| <|P(z,)| and
ensures that 2z, + L(z;,,) ‘Toughly’ lies inside a circular region of radius |F| about z;, known
to contain a zero of P(z); that is, |L(z;,)| < |F|, where F denotes the Féjer bound (see Marden
(1966)) at the point z,. Following Smith (1967), F is taken to be min(B,1.445nR), where B is an
upper bound for the magnitude of the smallest zero given by

B =1.0001 x min(v/nL(z,), ||, |a, /ag|™),

ry is the zero X of smaller magnitude of the quadratic equation
1
(P"(2,)/(2n(n — 1)) X2 + (P'(2,) /n) X + 5 P(z) =0

and the Cauchy lower bound R for the smallest zero is computed (using Newton’s Method) as the
positive root of the polynomial equation

lag|z™ + |al|z"71 + |a2|z”72 +...+la,_4lz—la,| =0.

Starting from the origin, successive iterates are generated according to the rule z; | = 2, +L(z,,) for
k=1,2,3,...and L(z,) is ‘adjusted’ so that |P(z,,)| < |P(2,)| and |L(2;,)| < |F|. The iterative
procedure terminates if P(z;_ ;) is smaller in absolute value than the bound on the rounding error
in P(2;,,) and the current iterate z, = z;,, is taken to be a zero of P(z) (as is its conjugate
z, if z, is complex). The deflated polynomial P(z) = P(2)/(z — z,) of degree n — 1 if z, is real
(P(z) = P(2)/((z — z,)(z — z,)) of degree n — 2 if z, is complex) is then formed, and the above
procedure is repeated on the deflated polynomial until n < 3, whereupon the remaining roots are
obtained via the ‘standard’ closed formulae for a linear (n = 1) or quadratic (n = 2) equation.

[NP3275/5/pdf] 3.c02agc. 1

nag_zeros_real_poly NAG C Library Manual

4. Parameters

n
Input: the degree of the polynomial, n.
Constraint: n > 1.

an+1]
Input: a[i] must contain a; (i.e. the coefficient of 2"~*), for i =0,1,...,n.
Constraint: a[0] # 0.0.

scale
Input: indicates whether or not the polynomial is to be scaled. The recommended value is
TRUE. See Section 6 for advice on when it may be preferable to set scale = FALSE and for
a description of the scaling strategy.

z[n]
Output: the real and imaginary parts of the roots are stored in z[i].re and z[i].im respectively,
fori=0,1,...,n — 1. Complex conjugate pairs of roots are stored in consecutive pairs of z;
that is, z[i + 1].re = z[i].re and z[i + 1].im = —z[i].im

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_INT_ARG._LT
On entry, n must not be less than 1: n = (value).

NE_REAL_ARG_EQ
On entry, a[0] must not be equal to 0.0: a[0] = (value).

NE_POLY_NOT_CONV
The iterative procedure has failed to converge. This error is very unlikely to occur. If it
does, please contact NAG immediately, as some basic assumption for the arithmetic has been
violated.

NE_POLY_UNFLOW
The function cannot evaluate P(z) near some of its zeros without underflow. Please contact
NAG immediately.

NE_POLY_OVFLOW
The function cannot evaluate P(z) near some of its zeros without overflow. Please contact
NAG immediately.

NE_ALLOC_FAIL
Memory allocation failed.

6. Further Comments

If scale = TRUE, then a scaling factor for the coefficients is chosen as a power of the base b of the
machine so that the largest coefficient in magnitude approaches thresh = b®m=x~P. Users should
note that no scaling is performed if the largest coefficient in magnitude exceeds thresh, even if
scale = TRUE. (For definition of b, e and p see Chapter Introduction x02.)

max

However, with scale = TRUE, overflow may be encountered when the input coefficients
ay,aq,04,. . .,0, vary widely in magnitude, particularly on those machines for which b*P overflows.
In such cases, scale should be set to FALSE and the coefficients scaled so that the largest coeflicient
in magnitude does not exceed b®max—2P,

Even so, the scaling strategy used in nag zeros_real_poly is sometimes insufficient to avoid overflow
and/or underflow conditions. In such cases, the user is recommended to scale the independent
variable (z) so that the disparity between the largest and smallest coefficient in magnitude is
reduced. That is, use the function to locate the zeros of the polynomial d x P(cz) for some suitable
values of ¢ and d. For example, if the original polynomial was P(z) = 27190 42100,20 then choosing

3.c02agc.2 [NP3275/5/pdf]

c02 — Zeros of Polynomials c02agc

6.1.

6.2.

8.1.

c=2"10and d = 219, for instance, would yield the scaled polynomial 1+ 22°, which is well-behaved
relative to overflow and underflow and has zeros which are 2!° times those of P(z).

If the function fails with NE_POLY_NOT_CONV, NE_POLY_UNFLOW or NE_POLY_ OVFLOW,
then the real and imaginary parts of any roots obtained before the failure occurred are stored in
z in the reverse order in which they were found. More precisely, zln—1].re and z[n—1].im contain
the real and imaginary parts of the 1st root found, z[n—2].re and z[n—2].im contain the real and
imaginary parts of the 2nd root found, and so on. The real and imaginary parts of any roots not
found will be set to a large negative number, specifically —1.0/(1/2.0xX02AMC).

Accuracy

All roots are evaluated as accurately as possible, but because of the inherent nature of the problem
complete accuracy cannot be guaranteed.

References

Marden M (1966) Geometry of Polynomials. Mathematical Surveys Am. Math. Soc., Providence,
Rhode Island, USA.

Smith B T (1967) ZERPOL: A Zero Finding Algorithm for Polynomials Using Laguerre’s Method
Technical Report, Department of Computer Science, University of Toronto, Canada.

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Clarendon Press, Oxford.

See Also

nag-zeros_complex_poly (c02afc)

Example
To find the roots of the 5th degree polynomial 2° 4+ 224 4 323 + 422 + 524+ 6 = 0.

Program Text

/* nag_zeros_real_poly(c02agc) Example Program

*
* Copyright 1991 Numerical Algorithms Group.
*

* Mark 2, 1991.

*/

#include <nag.h>
#include <stdio.h>
#include <math.h>
#include <nag_stdlib.h>
#include <nagc02.h>

#define MAXDEG 100

main()

{

Complex z[MAXDEG];
double a[MAXDEG+1];
Integer i, n, nroot;
Boolean scale;

Vprintf ("c02agc Example Program Results\n");
/* Skip heading in data file */
Vscanf ("%*["\nl");
Vscanf ("%1d", &n);
scale = TRUE;
if (n>0 && n<=MAXDEG)
{
for (i=0; i<=n; i++)
Vscanf ("%1f", &alil);
Vprintf ("\nDegree of polynomial = %41d\n\n", n);

c02agc(n, a, scale, z, NAGERR_DEFAULT);

[NP3275/5/pdf] 3.c02agc.3

nag_zeros_real_poly NAG C Library Manual

Vprintf ("Roots of polynomial\n\n");
nroot = 1;
while(nroot<=n)

{
if (z[nroot-1].im==0.0)
{
Vprintf ("z = %12.4e\n", z[nroot-1].re);
nroot += 1;
}
else
{
Vprintf ("z = %12.4e +/- %14.4e\n", z[nroot-1].re,
FABS(z[nroot-1] .im));
nroot += 2;
}
}
}
else
{

Viprintf (stderr, "Error: n is out of range: n = %31d\n", n);
exit (EXIT_FAILURE);

}
exit (EXIT_SUCCESS) ;

}
8.2. Program Data

cO2agc Example Program Data

1.0 2.0 3.0 4.0 5.0 6.0

8.3. Program Results

cO02agc Example Program Results
Degree of polynomial = 5

Roots of polynomial

z = -1.4918e+00
z = 5.5169e-01 +/- 1.2533e+00
z = -8.0579e-01 +/- 1.2229e+00

3.c02agc.4 [NP3275/5/pdf]

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

